平成 22 年度

ウミガラス保護増殖事業

報告書

平成 23 年 3 月

環境省北海道地方環境事務所
はじめに

ウミガラス（オロロン鳥）は、北半球寒冷地域に分布するウミスズメ科の海鳥である。

ウミガラスは、かつては松前小島、天売島、ユルリ島、モユルリ島に繁殖コロニーがあったが、現在は天売島だけである。生息数も昭和38年には8000羽と推定されたが、昭和40年代に入って激減し、現在は十数羽程度と国内絶滅の危機に瀕している。

環境省では、昭和57年に天売島全域を国指定鳥獣保護区に指定した。平成5年には、「絶滅のおそれのある野生動植物の種の保存に関する法律」に基づき、ウミガラスを「国内希少野生動物種」に指定し、更に、平成9年には調査研究や普及啓発活動等を総合的に行うための拠点施設として、「北海道海鳥センター」を開設した。

平成13年には「ウミガラス保護増殖事業計画」を策定し、平成15年度からは、「ウミガラス保護増殖分科会」を開催し、専門家による意見を踏まえた保護増殖事業を実施している。

本報告書は、平成22年度に実施した保護増殖事業の結果を中心にとりまとめたものである。

本業務を実施するに当たって、ご協力いただいた「ウミガラス保護増殖分科会」検討委員、北海道、羽幌町、萬谷良佳氏、青塚松寿氏、天売海鳥研究室など関係機関、関係者各位に対し厚く御礼申し上げる。
1. ウミガラス保護増殖事業結果（2010年） .. 1
 (1) 誘引対策 ... 1
 1) これまでの経緯 .. 1
 2) 音声装置の設置 ... 1
 (2) 繁殖状況 .. 3
 1) 屏風岩・屏風岩対崖（古灯台 B-2） ... 3
 2) 赤岩対崖 ... 5
 3) 全体的な飛来数・繁殖数 ... 9
 (3) 捕食者 .. 10
 1) 捕食者対策 .. 10
 2) ウミガラス繁殖地における捕食者 ... 13
2. その他海鳥の繁殖状況 .. 18
 (1) ケイマフリ Cephus carbo ... 18
 1) 海上個体数調査 ... 18
 2) 繁殖巣数調査 ... 19
 3) 航路センサス .. 21
 (2) ウミスズメ Synthliboramphus antiquus .. 22
 1) 夜間調査 .. 22
 2) 目撃記録 .. 22
 3) 航路センサス .. 23
 3) 過去の繁殖状況 .. 23
 4) 国内の繁殖地 ... 24
 (3) その他 .. 24
3. 普及啓発 .. 26
4. 文献 .. 27
5. 資料 .. 28
1. ウミガラス保護増殖事業結果（2010 年）

天売島は北海道北西部の海岸から 20km 沖合いの海上に位置し（図 1-1-1）、島の西部の崖地にはウミガラス Uria aalge を始めとした 8 種類の海鳥が繁殖している。近年ウミガラスの生息数が激減し絶滅が懸念されるため、ウミガラスの繁殖地への誘引、捕食者の駆除、繁殖状況のモニタリングなどの対策をとってきた。2010 年度も対策を継続して行っておりその結果を報告する。

図 1-1-1 天売島位置
図 1-1-2 音声装置位置

(1) 誘引対策

1) これまでの経緯

赤岩対崖のウミガラスの繁殖地におけるデコイの設置は 1992 年から断続的に行われてきたが、繁殖地周辺の崖は崩れやすく危険なため、2003 年からウミガラスの誘引場所を屏風岩に変更した。屏風岩ではデコイや音声装置を設置した結果、最大 50 羽の飛来を確認したが、開けた場所であるため 2006 年〜2008 年まで 3 年連続で卵や雛が捕食された可能性が高い。一方で 2008 年に既にデコイが設置されていた赤岩対崖の繁殖地から 3 羽の鶏が巣立った。赤岩対崖の繁殖地は窪んだ岩棚にあり中が見えにくいため、捕食者が侵入しにくいと考えられる。このため 2009 年よりウミガラスの誘引場所を屏風岩から再び赤岩対崖に移し事業を行ってきた。

屏風岩対崖（古灯台 B-2）の繁殖地は、デコイの設置できない崖にあるため、これまで事業の対象にならなかった。しかし、狭い岩の狭間にありこれまで繁殖成績がよい場所でもあったため、2010 年から新たに屏風岩対崖の崖下に音声装置を設置することとした。

2) 音声装置の設置

(a) 設置方法と結果

春に北方へ渡っていくウミガラスを天売島に誘引するため音声装置を 4 月 16 日から、赤岩対崖繁殖地から 20m ほど離れた場所と屏風岩対崖（古灯台 B-2）から 50m ほど離れた地点に設置した（図 1-1-2、表 1-1-1）。音声装置は充電制御装置、アンプ、スピーカー、バッテリー、ソーラーパネルから構成され、ソーラーパネルによる充電が可能な丁中のみ搬動するよう制御されている。ソーラーパネルを単管パイプの架台に固定し、架台を鉄筋のポルトにより地中に固定した。

屏風岩対崖の設置場所は湾内にあり水深もあるため、少し波がある日でもボートでの到達が可能であった。一方、赤岩対崖の設置場所は波が直接ぶつかる場所にあり水深も浅い岩場にあるため、風の日にのみボートでの到達が可能であった。赤岩対崖ではウミガラスが繁殖終了するまで音声装置を稼動させたが、屏風岩対崖では発電制御装置の装置に不具合により音声の停止が度々あり、屏風岩対崖へのウミガラスの飛来も確認されなかったため、6 月 8 日以降停止したままでした。
表 1-1-1 音声装置の写真と仕様

<table>
<thead>
<tr>
<th>設置場所</th>
<th>稼動期間</th>
<th>全景</th>
<th>音声装置</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>屏風岩対崖 (古灯台 B-2)</td>
<td>2010/4/16-2010/6/7</td>
<td></td>
<td></td>
<td>70w デジタルアンプ×2 スピーカー×4 充電制御装置×1 ディープサイクルバッテリー12V×1 70wソーラーパネル×3</td>
</tr>
<tr>
<td>赤岩対崖</td>
<td>2010/4/16-2010/8/10</td>
<td></td>
<td></td>
<td>40w デジタルアンプ×4 スピーカー×8 充電制御装置×1 ディープサイクルバッテリー12V×2 70wソーラーパネル×4</td>
</tr>
</tbody>
</table>

*実線枠はウミガラスの繁殖地

(b) 過去の音声装置の設置

1991年に屏風岩から200mほど離れた崖の上、2005年には屏風岩下部に音声装置を設置したが繁殖に対する効果は確認されていない（寺沢1992 環境省2006 表 1-1-2 図 1-1-3）。距離が離れていたことや音量が少なかったことが原因として考えられている。2006年より大音量で指向性がある音声装置を設置したところ、屏風岩で最大50羽が飛来し、繁殖は失敗したものの雛や卵が確認された。

表 1-1-2 過去の音声装置設置状況

<table>
<thead>
<tr>
<th>年</th>
<th>音声装置特徴</th>
<th>誘引場所</th>
<th>設置場所</th>
<th>飛来数</th>
<th>繁殖状況</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>60w×1指向型</td>
<td>屏風岩</td>
<td>屏風岩より約200m離れた崖上</td>
<td>7羽</td>
<td>繁殖1</td>
<td>寺沢(1992)</td>
</tr>
<tr>
<td>2005</td>
<td>20w×1無方向型</td>
<td>屏風岩</td>
<td>屏風岩下部</td>
<td>1羽</td>
<td>卵</td>
<td>環境省(2006)</td>
</tr>
<tr>
<td>2006</td>
<td>40w×4指向型</td>
<td>屏風岩</td>
<td>屏風岩下部</td>
<td>50羽</td>
<td>卵2</td>
<td>環境省(2010)</td>
</tr>
<tr>
<td>2007</td>
<td>40w×4指向型</td>
<td>屏風岩</td>
<td>屏風岩下部</td>
<td>21羽</td>
<td>雛1</td>
<td>環境省(2010)</td>
</tr>
<tr>
<td>2008</td>
<td>40w×4指向型</td>
<td>屏風岩</td>
<td>屏風岩下部</td>
<td>9羽</td>
<td>卵1</td>
<td>環境省(2010)</td>
</tr>
<tr>
<td>*2009</td>
<td>70w×2指向型</td>
<td>屏風岩</td>
<td>屏風岩下部</td>
<td>1羽</td>
<td>卵</td>
<td>環境省(2010)</td>
</tr>
<tr>
<td>2009</td>
<td>40w×4指向型</td>
<td>赤岩対崖</td>
<td>赤岩対崖下20m</td>
<td>9羽</td>
<td>雛3</td>
<td>環境省(2010)</td>
</tr>
<tr>
<td>**2010</td>
<td>70w×2指向型</td>
<td>屏風岩対崖</td>
<td>屏風岩対崖下50m</td>
<td>0羽</td>
<td></td>
<td>本報告書</td>
</tr>
<tr>
<td>2010</td>
<td>40w×4指向型</td>
<td>赤岩対崖</td>
<td>赤岩対崖下20m</td>
<td>19羽</td>
<td>卵4(1)雌2</td>
<td>本報告書</td>
</tr>
</tbody>
</table>

*2009年屏風岩に音声装置を設置したが繁殖前に停止
**2010年に屏風岩対崖に設置したが充電制御装置の不具合により停止

図 1-1-3 過去に設置した音声装置
繁殖状況

1) 屏風岩・屏風岩対崖（古灯台 B-2）

(a) 調査方法と結果

誘引場所である屏風岩対崖を観察するためにはポートが必要である。ボード上または屏風岩から7回屏風岩対崖繁殖地の観察を行ったが、ウミガラスは確認されなかった（表 1-2-1、図 1-2-1）。屏風岩対崖に設置していた音声は6月8日以降停止していたが、屏風周辺の海上で6月8日に1羽、7月9日に2羽（情報）、7月14日に1羽のウミガラスが目撃された。

<table>
<thead>
<tr>
<th>日付</th>
<th>観察時刻</th>
<th>観察場所</th>
<th>屏風岩</th>
<th>屏風岩対崖</th>
<th>备考</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/5/9</td>
<td>11:00</td>
<td>船</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2010/5/19</td>
<td>11:40</td>
<td>船</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2010/5/22</td>
<td>13:30</td>
<td>船</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2010/6/1</td>
<td>15:00</td>
<td>船</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2010/6/5</td>
<td>6:00</td>
<td>船</td>
<td>0</td>
<td>0</td>
<td>情報（寺沢孝毅氏）</td>
</tr>
<tr>
<td>2010/6/7</td>
<td>14:20</td>
<td>船</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2010/6/8</td>
<td>8:30</td>
<td>船</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2010/7/1</td>
<td>6:30</td>
<td>屏風岩</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2010/7/9</td>
<td>15:30</td>
<td>船</td>
<td>0</td>
<td>2</td>
<td>情報（伊藤元裕氏）</td>
</tr>
<tr>
<td>2010/7/14</td>
<td>6:50</td>
<td>陸上</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(b) 過去の繁殖状況との比較

表1-2-2 屏風岩と屏風岩対崖における1990-2010年のウミガラス繁殖状況

卵数=卵・抱卵姿勢の目撃、雛数=雛・餌運びの目撃、巣立ち数=巣立ちの目撃、()内は上記以外の推定数、網掛けは屏風岩で大音量の音声装置を設置した年、*5月24日に音声を停止、+不明数の目撃情報

<table>
<thead>
<tr>
<th>年</th>
<th>飛来数</th>
<th>卵数</th>
<th>雛数</th>
<th>巣立ち数</th>
<th>飛来数</th>
<th>卵数</th>
<th>雛数</th>
<th>巣立ち数</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>4</td>
<td>1</td>
<td>(1)</td>
<td>0</td>
<td>6</td>
<td>寺沢(1991)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>(1)</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>武田他(1992)</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1(1)</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>寺沢他(1995)</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>(2)</td>
<td>寺沢他(1995)</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>0</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>2(2)</td>
<td>寺沢他(1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>0</td>
<td>9</td>
<td>4</td>
<td>3(1)</td>
<td>(4)</td>
<td>羽幌町未発表</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>1(3)</td>
<td>羽幌町未発表</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>11</td>
<td>4</td>
<td>3(1)</td>
<td>(4)</td>
<td>羽幌町未発表</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>6</td>
<td>(3)</td>
<td>(2)</td>
<td>北海道海鳥センター(2004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>6</td>
<td>(3)</td>
<td>(1)</td>
<td>北海道海鳥センター(2004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>6</td>
<td>(3)</td>
<td>(3)</td>
<td>北海道海鳥センター(2004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>7</td>
<td>(3)</td>
<td>(3)</td>
<td>北海道海鳥センター(2004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>6</td>
<td>(3)</td>
<td>(2)</td>
<td>北海道海鳥センター(2004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>3</td>
<td>(1)</td>
<td>0</td>
<td>環境省未発表</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>環境省(2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>50</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>環境省(2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>21</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>環境省(2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>環境省(2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*2009</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>環境省(2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>本報告</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2) 赤岩対崖

(a) 調査方法

ウミガラスの動きが活発な朝と夕方を中心に、陸上 3 地点から観察を行った（図 1-2-2）。繁殖地が観察可能な赤岩突端と赤岩付根ではビデオカメラを設置して 2 時間から 6 時間の連続観察を行った。赤岩展望台からは海上の個体を観察した。赤岩突端と付根は海岸沿いを徒歩片道約 60 分の距離にあり、途中に歩いて海を渡る場所があるため、両地点とも風の日のみ到達が可能である。繁殖地は高さ 25m 程の岩棚の窪みにあるため、繁殖地の入り口付近が可視範囲で、繁殖地の奥は海上の離れた場所からのみ観察が可能であった。

(b) 調査結果

a) 飛来状況

赤岩対崖と周辺の海上におけるウミガラスの飛来状況を表 1-2-3 に示した。ウミガラス繁殖状況や捕食者の飛来状況の詳細を把握するために、2010 年は赤岩突端と付根で観察する回数を 2009 年の 10 回から 19 回に増やした。赤岩対崖繁殖地におけるウミガラスの初確認は 5 月 19 日（2009 年は 5 月 23 日）であった。繁殖地における最大数は 7 月 11 日に 18 羽（海上を合わせると 19 羽）であった。最大数は 5 月か 6 月に確認されている過去の調査結果とは傾向が異なった。繁殖地への飛来が最後に確認されたのは 7 月 15 日であった。その後も繁殖地周辺の海上で姿が確認され、最後に確認されたのは 7 月 24 日であった。繁殖地よ り 200m ほど離れた岩礁で 2009 年に最大 15 羽を確認したが、今年はここで 1 羽も確認されなかった。一方で 2009 年に確認されなかった赤岩対崖の繁殖地の周辺（図 1-2-3）への飛来または一時的な移動が 6 月 8 日、6 月 13 日、6 月 29 日、7 月 3 日、7 月 11 日、7 月 14 日に確認された。繁殖地周辺の岩や岩礁へのとまり等の行動は繁殖年齢に達する前の若鳥の行動として報告されている。（Birkhead and Hudson 1977, Halley et al. 1995）。2009 年に引き続き 2010 年も若鳥の繁殖地への飛来が示唆された。
<table>
<thead>
<tr>
<th>日付</th>
<th>赤岩対崖</th>
<th>赤岩海上</th>
<th>観察場所</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/5/9</td>
<td>0</td>
<td>-</td>
<td>船</td>
<td></td>
</tr>
<tr>
<td>2010/5/19</td>
<td>16</td>
<td>-</td>
<td>赤岩突端</td>
<td></td>
</tr>
<tr>
<td>2010/5/19</td>
<td>3</td>
<td>-</td>
<td>船</td>
<td>情報（寺沢孝毅氏）</td>
</tr>
<tr>
<td>2010/5/31</td>
<td>12</td>
<td>-</td>
<td>赤岩突端</td>
<td>カラスにより10羽飛去。卵1つ捕食される</td>
</tr>
<tr>
<td>2010/6/2</td>
<td>14</td>
<td>-</td>
<td>赤岩突端</td>
<td>カラスにより12羽飛去。</td>
</tr>
<tr>
<td>2010/6/7</td>
<td>4</td>
<td>-</td>
<td>船</td>
<td></td>
</tr>
<tr>
<td>2010/6/8</td>
<td>3</td>
<td>-</td>
<td>赤岩突端</td>
<td></td>
</tr>
<tr>
<td>2010/6/8</td>
<td>4</td>
<td>-</td>
<td>赤岩付根</td>
<td></td>
</tr>
<tr>
<td>2010/6/13</td>
<td>4</td>
<td>-</td>
<td>赤岩付根</td>
<td></td>
</tr>
<tr>
<td>2010/6/16</td>
<td>5</td>
<td>-</td>
<td>赤岩突端</td>
<td></td>
</tr>
<tr>
<td>2010/6/16</td>
<td>2</td>
<td>-</td>
<td>赤岩突端</td>
<td></td>
</tr>
<tr>
<td>2010/6/20</td>
<td>3</td>
<td>-</td>
<td>船</td>
<td>情報（伊藤元裕氏）</td>
</tr>
<tr>
<td>2010/6/21</td>
<td>2</td>
<td>-</td>
<td>赤岩展望台</td>
<td>情報（伊藤元裕氏）</td>
</tr>
<tr>
<td>2010/6/21</td>
<td>3</td>
<td>-</td>
<td>船</td>
<td>情報（寺沢孝毅氏）ガラス1羽が赤岩展望台の崖より繁殖地へ入る</td>
</tr>
<tr>
<td>2010/6/25</td>
<td>10</td>
<td>-</td>
<td>赤岩突端</td>
<td></td>
</tr>
<tr>
<td>2010/6/28</td>
<td>1</td>
<td>-</td>
<td>船</td>
<td></td>
</tr>
<tr>
<td>2010/6/29</td>
<td>2</td>
<td>-</td>
<td>赤岩展望台</td>
<td></td>
</tr>
<tr>
<td>2010/6/29</td>
<td>6</td>
<td>-</td>
<td>赤岩突端</td>
<td></td>
</tr>
<tr>
<td>2010/7/2</td>
<td>4</td>
<td>-</td>
<td>赤岩突端</td>
<td></td>
</tr>
<tr>
<td>2010/7/3</td>
<td>7</td>
<td>-</td>
<td>赤岩突端</td>
<td></td>
</tr>
<tr>
<td>2010/7/7</td>
<td>11</td>
<td>-</td>
<td>赤岩突端</td>
<td>オオセグロカモメが卵の殻くわえる 餌運び確認。</td>
</tr>
<tr>
<td>2010/7/9</td>
<td>3</td>
<td>-</td>
<td>船</td>
<td>情報（伊藤元裕氏）</td>
</tr>
<tr>
<td>2010/7/11</td>
<td>18</td>
<td>1</td>
<td>赤岩突端</td>
<td>合わせて19羽（最大）</td>
</tr>
<tr>
<td>2010/7/13</td>
<td>3</td>
<td>-</td>
<td>赤岩展望台</td>
<td></td>
</tr>
<tr>
<td>2010/7/14</td>
<td>3</td>
<td>-</td>
<td>赤岩展望台</td>
<td></td>
</tr>
<tr>
<td>2010/7/14</td>
<td>11</td>
<td>-</td>
<td>赤岩付根</td>
<td></td>
</tr>
<tr>
<td>2010/7/15</td>
<td>2</td>
<td>-</td>
<td>赤岩突端</td>
<td>入り口のみ。</td>
</tr>
<tr>
<td>2010/7/16</td>
<td>0</td>
<td>-</td>
<td>赤岩突端</td>
<td>3羽巣の近くを旋回。</td>
</tr>
<tr>
<td>2010/7/20</td>
<td>10</td>
<td>-</td>
<td>赤岩展望台</td>
<td></td>
</tr>
<tr>
<td>2010/7/23</td>
<td>1</td>
<td>-</td>
<td>船</td>
<td>情報（寺沢孝毅氏）</td>
</tr>
<tr>
<td>2010/7/24</td>
<td>6</td>
<td>-</td>
<td>赤岩展望台</td>
<td></td>
</tr>
<tr>
<td>2010/7/25</td>
<td>0</td>
<td>-</td>
<td>赤岩突端</td>
<td>海上0羽</td>
</tr>
<tr>
<td>2010/8/10</td>
<td>0</td>
<td>-</td>
<td>赤岩付根</td>
<td>海上0羽</td>
</tr>
</tbody>
</table>

図1-2-3 赤岩対崖繁殖地とその周り
b) 繁殖状況
観察結果による繁殖状況の推定と位置を表1-2-4と図1-2-4に示した。5月31日にハシブトガラスによって右壁際の卵が1つ捕食された。このことから5月31日以前に抱卵を開始していたことが明らかになった。2009年に繁殖地内にデコイを増設したことにより、海上からの抱卵姿勢の確認は難しくなり抱卵姿勢は確認できなかった。

7月7日に飼運び（ギンポの仲間）を初確認した。7月3日に飼運びが確認されなかったことから、7月3日から6日の間に孵化したと推察される。抱卵日数を33日とし、ウミガラスの孵化に1日から3日要することを踏まえると（Gaston and Jones 1998）、卵の抱卵開始は5月29日から6月3日の間と推定した。抱卵開始は2009年の6月中旬と比べて早くなった。

7月7日にウミガラスの卵の殻をくわえ何かをすするようなそぶりを見せるオオセグロカモメを繁殖地内で確認し、後に崖下でウミガラスの卵の殻を発見した。また、この日にオオセグロカモメは6回飛来しており、2009年に雌を捕食した8月2日の7回飛来の状況と酷似していた。以上からオオセグロカモメがくわえていた卵の殻は捕食したウミガラスの卵であると判断した。

左側の旧型デコイ裏への飼運びを2回確認した（図1-2-4）。このほかに1本デコイ裏奥方向への飼運びを確認した（図1-2-4）。奥の様子を観察することはできないが、左側の旧型デコイ裏へ行かなかったことから別つがいであることが明らかになった。これらの2箇所はデコイの増設により観察地点や海上から見えなくなったり、2008年と2009年に雛を捕食した7月7日の7回飛来の状況と酷似していた。一方で2009年に新たに設置した左側のデコイ周辺は親鳥がとどまる動きがみられなかったことから、2008年・2009年と同様に繁殖場所として利用されなかったと推察される。

オオセグロカモメが卵の殻をくわえるのを目撃した後に、右壁際のデコイ裏への出入りが確認され、オオセグロカモメの飛来を観察した。これは2008年と2009年に雛が確認されており、捕食がおこなわれていた可能性がある。一方で2009年に新たに設置した左側のデコイ周辺は親鳥がとどまる動きがみられなかったことから、2008年・2009年と同様に繁殖場所として利用されなかったと推察される。

7月11日に飼運びが確認されなくなったり、繁殖地内に常時残っているウミガラスはいなくなった。日齢から巣立った可能性は考えられず、この時点でウミガラスの卵や雛は何らかの理由により繁殖地から姿を消したと考えられる。ウミガラスの繁殖地への飛来は7月15日まで確認した。

交尾のような行動が5月19日、6月2日、6月7日、7月7日、7月11日、7月14日に確認された。7月は抱卵期の後期から育雛期に当たり交尾は考えにくいが、來年の繁殖に向けた成鳥や若鳥の行動の可能性が示唆された。

全体としてハシブトガラスとオオセグロカモメの捕食により確認できた卵が2個、飼運びにより確認できた雛が2羽、このほか繁殖地への出入りから推定される卵が1であった。ウミガラスの卵数は1であるが、抱卵初期に捕食された場合1回だけ産み直すことができると考えられると（Gaston and Jones 1998）、オオセグロカモメに捕食された卵は産み直されたものである可能性がある。以上から2010年の繁殖結果は繁殖つがい数3から5、卵数4か5、孵化数2、巣立ち雛0とした。

<table>
<thead>
<tr>
<th>表1-2-4 ウミガラスの観察結果と繁殖状況の推定</th>
</tr>
</thead>
<tbody>
<tr>
<td>観察日</td>
</tr>
<tr>
<td>5月31日</td>
</tr>
<tr>
<td>7月7日</td>
</tr>
<tr>
<td>7月7日</td>
</tr>
<tr>
<td>7月7日</td>
</tr>
<tr>
<td>7月11日</td>
</tr>
</tbody>
</table>

写真1 卵捕食（5/31） 写真2 卵殻くわえる（7/7） 写真3 飼運び（7/7） 写真4 飼運び（7/7）
約3m

約2m

2010年の繁殖状況

☆ 雛推定位置 7/7
オオセグロカモメ卵殻持つ

ハシブトガラス卵捕食

オオセグロカモメ卵殻持つ

ハシブトガラス卵捕食

図1-2-4 ウミガラスの繁殖地内模式図(上)写真（下）
c) 過去の繁殖状況

赤岩対崖の 2010 年の飛来数は繁殖地で 18 羽と、2009 年 9 羽と比べて増加し、1990 年以降で最も多かった 1996 年と同数であった（表 1-2-5）。2009 年より早く設置した音声装置と増設したデコイの効果による可能性がある。

表 1-2-5 赤岩対崖における 1990-2010 年の繁殖状況

卵数＝卵・抱卵姿勢の目撃、雛数＝雛・餌運びの目撃、巣立ち数＝巣立ちの目撃、（ ）内は上記以外の推定数

<table>
<thead>
<tr>
<th>年</th>
<th>飛来数</th>
<th>卵数</th>
<th>雛数</th>
<th>巣立ち数</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>寺沢 (1991)</td>
</tr>
<tr>
<td>1991</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>武田他 (1992)</td>
</tr>
<tr>
<td>1992</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>寺沢他 (1995)</td>
</tr>
<tr>
<td>1993</td>
<td>6</td>
<td>3</td>
<td>3 (3)</td>
<td></td>
<td>寺沢他 (1995)</td>
</tr>
<tr>
<td>1994</td>
<td>7</td>
<td>3</td>
<td>1(2) (3)</td>
<td></td>
<td>羽幌町未発表</td>
</tr>
<tr>
<td>1995</td>
<td>18</td>
<td>2(7)</td>
<td>3(6) 1(8)</td>
<td></td>
<td>羽幌町未発表</td>
</tr>
<tr>
<td>1997</td>
<td>12</td>
<td>0</td>
<td></td>
<td></td>
<td>北海道海鳥センター (2004)</td>
</tr>
<tr>
<td>1999</td>
<td>6</td>
<td>(2)</td>
<td>(2)</td>
<td></td>
<td>北海道海鳥センター (2004)</td>
</tr>
<tr>
<td>2001</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>環境省未発表</td>
</tr>
<tr>
<td>2002</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>北海道海鳥センター (2004)</td>
</tr>
<tr>
<td>2003</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>環境省未発表</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>北海道海鳥センター (2004)</td>
</tr>
<tr>
<td>2007</td>
<td>8</td>
<td>3</td>
<td>2(1) (3)</td>
<td></td>
<td>北海道海鳥センター (2004)</td>
</tr>
<tr>
<td>2008</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>環境省 (2010)</td>
</tr>
<tr>
<td>2009</td>
<td>18</td>
<td>4(1)</td>
<td>2</td>
<td>0</td>
<td>本報告書</td>
</tr>
</tbody>
</table>

3) 全体的な飛来数・繁殖数

2010 年の天売島全体のウミガラス飛来数・繁殖数を表 1-2-6 に示した。

表 1-2-6 全体的飛来数・繁殖数（ ）内は推定値

<table>
<thead>
<tr>
<th>繁殖地</th>
<th>最大数</th>
<th>つがい数</th>
<th>卵数</th>
<th>雛数</th>
<th>喙立ち数</th>
</tr>
</thead>
<tbody>
<tr>
<td>赤岩対崖</td>
<td>18</td>
<td>3(+2)</td>
<td>4(+1)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>屏風岩</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>屏風岩対崖</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>島全体(海上含む)</td>
<td>19</td>
<td>3(+2)</td>
<td>4(+1)</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
（3）捕食者

1）捕食者対策

（a）ハシブトガラス Corvus macrorhynchos

a）ルートセンサス・港周辺における任意観察

・調査方法

ルートセンサスでは4月から12月までの10回、天売島の周回道路を集落と海鳥繁殖地周辺に区切って、車（10km/h程度）または徒歩で移動し、片側100m以内に現れたハシブトガラスを数えた（図1-3-1）。港周辺では天売港と前浜漁港又は周辺の見晴らしのよい場所から任意観察しハシブトガラスを数えた。

図1-3-1 ハシブトガラスのルートセンサス、港周辺における任意観察範囲、ねぐら位置

・調査結果

ハシブトガラスの個体数は7月に最も少なく、8月・9月・12月に多いほかは60-80羽程度であった（表1-3-1）。6月・7月の個体数が少ないのは葉が茂り観察しにくくなったことが原因の一つとして挙げられる。8月から個体数が増加したのは巣立った幼鳥により個体数が補充されたことが考えられる。12月の個体数が多いのは葉が落ちて観察しやすいことが原因の一つとして考えられる。場所別に見ると海鳥繁殖地では4月から8月はそれ以外の時期に比べて多い傾向にあった。9月から12月にかけては相対的に集落で多く、海鳥繁殖地で少ない傾向にあった。また、ハシブトガラスの数に対して平均12%のハシボソガラスが確認された。
表1-3-1 ハシブトガラスルートセンサス・任意観察結果

<table>
<thead>
<tr>
<th>調査日</th>
<th>集落</th>
<th>海鳥繁殖地周辺</th>
<th>合計</th>
<th>港周辺</th>
<th>ルート+任意</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/4/25</td>
<td>42</td>
<td>11</td>
<td>53</td>
<td>21</td>
<td>74</td>
</tr>
<tr>
<td>2010/4/26</td>
<td>31</td>
<td>28</td>
<td>59</td>
<td>15</td>
<td>74</td>
</tr>
<tr>
<td>2010/5/23</td>
<td>22</td>
<td>20</td>
<td>42</td>
<td>47</td>
<td>89</td>
</tr>
<tr>
<td>2010/6/15</td>
<td>18</td>
<td>31</td>
<td>49</td>
<td>9</td>
<td>58</td>
</tr>
<tr>
<td>2010/7/26</td>
<td>20</td>
<td>9</td>
<td>29</td>
<td>5</td>
<td>34</td>
</tr>
<tr>
<td>2010/8/8</td>
<td>52</td>
<td>60</td>
<td>112</td>
<td>8</td>
<td>120</td>
</tr>
<tr>
<td>2010/9/11</td>
<td>85</td>
<td>15</td>
<td>100</td>
<td>34</td>
<td>134</td>
</tr>
<tr>
<td>2010/10/5</td>
<td>47</td>
<td>2</td>
<td>49</td>
<td>15</td>
<td>64</td>
</tr>
<tr>
<td>2010/10/6</td>
<td>55</td>
<td>12</td>
<td>67</td>
<td>11</td>
<td>78</td>
</tr>
<tr>
<td>2010/12/8</td>
<td>78</td>
<td>12</td>
<td>90</td>
<td>12</td>
<td>102</td>
</tr>
</tbody>
</table>

・過去の調査結果との比較
ハシブトガラスのセンサスは1988年に行われたことがあるが、最大数は10月16日に136羽であった（北海道1989）。2010年の最大数は9月11日に134羽であり確認数はほぼ同じであった。

b)ねぐら調査
・調査方法
4月から12月までの7回、日の入り時刻頃にねぐら周辺に待機し（図1-3-1）、一度に数えたカラス類の最大数又は一方向へ移動する総数を数えた。ねぐら調査では光量の少ない日暮れ時であることも一度に多数のカラスが飛び立った場合にハシブトガラスとハシボソガラスを瞬時に識別することは困難であるためカラス類として扱った。

・調査結果
木に葉が生えそろう5月末までは1箇所に多くの個体が集まったり集団飛行が観察されたが、6月以降確認個体数は減少した（表1-3-2）。10月5日に確認数が3羽であったため、10月6日に周辺のねぐらの有無を車で調査した結果、集落周辺の広範囲にわたりハシブトガラスの姿が確認されたが、集団ねぐらは発見されなかった。12月7日も同様であった。

表1-3-2 カラス類ねぐら調査結果

<table>
<thead>
<tr>
<th>調査日</th>
<th>調査時間</th>
<th>個体数</th>
<th>集団飛行回数</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/5/11</td>
<td>18:30</td>
<td>110</td>
<td>5</td>
</tr>
<tr>
<td>2010/5/23</td>
<td>18:30</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>2010/5/30</td>
<td>19:00</td>
<td>86</td>
<td>3</td>
</tr>
<tr>
<td>2010/6/14</td>
<td>19:00</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>2010/8/3</td>
<td>18:40</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>2010/10/5</td>
<td>16:45</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2010/12/7</td>
<td>15:40</td>
<td>16:30</td>
<td>-</td>
</tr>
</tbody>
</table>

c)巣の調査
・調査方法
多くのカラス類が抱卵を開始する5月上旬から広葉樹が芽吹き巣を探すのが困難になる前の5月下旬までの2010年5月9-11日・17-18日・23-24日に道路沿いや集落周辺、林道沿い、海鳥繁殖地周辺を車または徒歩で踏査しカラス類の巣を探した結果、巣が還される部の巣を採した（図1-3-2）。巣が採られた場合は利用中とし、それ以外の巣は古巣または利用状況が不明としました。
雌の孵化後の5月24日と6月2日に海鳥繁殖地周辺で確認した巣を挙げた視察の一部の巣を先に
金具の付いた長さ5mの竹竿で除去し、雌の数を記録した。
図1-3-2 カラス類の巣の調査ルートおよび巣の位置（ラベルの数値は確認した巣の雛の数）

・調査結果

62のカラス類の巣を発見した（図1-3-2）。このうち利用を確認したハシブトガラスの巣は11個、ハシボソガラスの巣は2個、種未確認のカラスの巣は3個、古巣または利用状況が不明の巣が46個であった（表1-3-3）。カラスは複数の巣のうち一つを利用しているようで利用中の巣のまわりに古巣が複数見つかった。発見した巣の66%は集落周辺にあり、人の活動への依存が示唆された。

海鳥繁殖地の崖でハシブトガラスの巣を1個、周辺で7個除去し、集落周辺で8個の巣を除去した結果、ハシブトガラスの巣を合計13羽捕獲した。海鳥繁殖地の巣の巣のうち1つの巣では2羽の雛を捕獲したが、もう一つの巣は近づけない崖にあり巣の除去ができなかった（図1-3-3）。

図1-3-3 海鳥繁殖地崖におけるハシブトガラスの巣
過去の結果との比較
過去のカラス類の巣の調査結果を表に示した（表1-3-3）。2001年（北海道海鳥センター2002）の調査では52巣（ハシブトガラス9巣、ハシボソガラス1巣）で今回の62巣（ハシブトガラス11巣、ハシボソガラス2巣）と大差はなかった。巣の位置も集落周辺が多く、両年の間に大きな変化はみられなかった。

表1-3-3 過去のカラス類の巣の調査結果

<table>
<thead>
<tr>
<th>年</th>
<th>利用中の巣</th>
<th>古巣・不明の巣</th>
<th>合計</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ハシブトガラス</td>
<td>ハシボソガラス</td>
<td>不明カラス類</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>2010</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>46</td>
</tr>
</tbody>
</table>

（b）オオセグロカモメ Larus schistisagus
ウミガラスの赤岩対崖繁殖地周辺で発見し到達可能な巣にあった17個の卵を孵化しないように振り（シェイキング）5羽のヒナを捕獲した（図1-3-4）。1991年に39羽のオオセグロカモメを捕獲したが（武田ほか1992）、これ以降の捕獲は行われていない。

図1-3-4 オオセグロカモメ捕獲位置

2) ウミガラス繁殖地における捕食者
(a) 飛来状況
ハシブトガラス
合計15回のハシブトガラスの飛来を確認した（表1-3-4）。このうち繁殖地内に侵入したのは86%で投石による排除を除くと100%であった。ハシブトガラスは2羽での飛来が3回あり、1羽飛来ののちもう1羽が遅れて飛来した。1羽のディスプレイの行動からつがいの可能性が高いが、育雛初期に2羽飛来したことから繁殖していないか繁殖を失敗した個体であることが推定される。

ハシブトガラスの侵入によるウミガラス一斉飛去を5月31日と6月2日に2回目撃した。これは2006年、2007年にも観察されている。5月31日にハシブトガラスが繁殖地に侵入し中を歩き回り威嚇行動をとった。この時、真ん中にいた1羽のウミガラスが右の壁際に逃げ込んだ結果、パニックを起こし10羽が一斉に飛び立った。繁殖地内に2羽が残っていたが、数分後に飛去した。また、ハシブトガラスが繁殖地内で声を出し、ウミガラスを威嚇するような行動が複数観察されたことから、ウミガラスを脅かし飛去させて、数が減った（またはいなくなった）巣内から卵を奪う戦略があった。5月31日に繁殖地に侵入したハシブトガラスは西側のウミネココロニー上の崖の裏側へ飛去し、6月21日には赤岩展望台の崖から赤岩を経由して繁殖地に侵入した（図1-3-5）。
<table>
<thead>
<tr>
<th>日付</th>
<th>時刻</th>
<th>侵入箇所</th>
<th>手ぶらで飛去（ウミネココロニー方向）</th>
<th>パニック起こして10羽飛去</th>
<th>2羽残る</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/5/31</td>
<td>9:09</td>
<td>繁殖地内</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010/5/31</td>
<td>9:12</td>
<td>繁殖地内</td>
<td></td>
<td></td>
<td>2羽残る</td>
</tr>
<tr>
<td>2010/5/31</td>
<td>10:16</td>
<td>繁殖地内</td>
<td>手ぶらで飛去</td>
<td></td>
<td>12羽飛去 2羽残る</td>
</tr>
<tr>
<td>2010/6/2</td>
<td>8:10</td>
<td>繁殖地内</td>
<td>手ぶらで飛去</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010/6/2</td>
<td>8:46</td>
<td>繁殖地内</td>
<td>手ぶらで飛去（飛去してまた戻り飛去）</td>
<td></td>
<td>2羽</td>
</tr>
<tr>
<td>2010/6/2</td>
<td>8:49</td>
<td>繁殖地内</td>
<td>左側の岩棚より歩いて来る手ぶらで飛去</td>
<td>5羽 1羽ハシブトガラスの飛来で飛去</td>
<td></td>
</tr>
<tr>
<td>2010/6/16</td>
<td>8:02</td>
<td>繁殖地内</td>
<td>デコイの上に乗る。手ぶらで飛去</td>
<td>4羽</td>
<td></td>
</tr>
<tr>
<td>2010/6/16</td>
<td>9:00</td>
<td>繁殖地内</td>
<td>封鎖デコイの上からデコイを渡って侵入 手ぶらで飛去</td>
<td>3羽</td>
<td></td>
</tr>
<tr>
<td>*2010/6/21</td>
<td>15:32</td>
<td>繁殖地内</td>
<td>赤岩展望台から赤岩を経由して飛来 手ぶらで飛去</td>
<td>3羽</td>
<td></td>
</tr>
<tr>
<td>2010/6/28</td>
<td>16:00</td>
<td>繁殖地内</td>
<td>左の棚から侵入</td>
<td>1羽飛去</td>
<td></td>
</tr>
<tr>
<td>2010/7/2</td>
<td>11:10</td>
<td>左の棚</td>
<td>手ぶらで飛去</td>
<td>不明</td>
<td></td>
</tr>
<tr>
<td>2010/7/2</td>
<td>11:10</td>
<td>左の棚</td>
<td>手ぶらで飛去</td>
<td>不明</td>
<td></td>
</tr>
<tr>
<td>2010/7/3</td>
<td>18:09</td>
<td>繁殖地内</td>
<td>手ぶらで飛去</td>
<td>1羽飛去</td>
<td></td>
</tr>
<tr>
<td>2010/7/15</td>
<td>15:40</td>
<td>繁殖地内</td>
<td>デコイの上にとまる。手ぶらで飛去</td>
<td>0羽</td>
<td></td>
</tr>
</tbody>
</table>

網かけは同時確認
*情報 寺沢孝毅氏

図 1-3-5 赤岩繁殖地周辺におけるオオセグロカモメ・ハシブトガラスの動きと巣の位置
b) オオセグロカモメ
オオセグロカモメは6月に1回、7月に7回の合計8回の飛来を確認した（表1-3-5）。このうち繁殖地内への侵入を目撃したのは20％であった。オオセグロカモメは6月8日に繁殖地に侵入した後、西側のウミネココロニー上の崖の裏側へ飛去した（図1-3-5）。7月7日には侵入後に赤岩の上に移動した（図1-3-5）。7月の7回の飛来のうちの6回はウミガラスの卵の殻をくわえていた7月7日に目撃され、雛を捕食した日に7回の飛来が確認された2009年の8月2日（環境省2010）と同様の行動であった。

<table>
<thead>
<tr>
<th>日付</th>
<th>時刻</th>
<th>侵入場所</th>
<th>捕食者の行動</th>
<th>ウミガラスの数と動き</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/6/8</td>
<td>9:40</td>
<td>繁殖地内</td>
<td>手ぶらで飛去（ウミネココロニー方向）</td>
<td>1羽</td>
</tr>
<tr>
<td>2010/7/3</td>
<td>16:51</td>
<td>右のテラス</td>
<td>手ぶらで飛去</td>
<td>4羽</td>
</tr>
<tr>
<td>2010/7/7</td>
<td>14:29</td>
<td>繁殖地内</td>
<td>ウミガラスの卵の殻をくわえ 手ぶらで飛去</td>
<td>6羽 1羽遮げてはむの飛来</td>
</tr>
<tr>
<td>2010/7/7</td>
<td>15:28</td>
<td>左の棚</td>
<td>手ぶらで飛去 繁殖地へ歩い で飛去</td>
<td>6羽 1羽遮げてはむの飛来</td>
</tr>
<tr>
<td>2010/7/7</td>
<td>16:41</td>
<td>左の棚</td>
<td>手ぶらで飛去 しばらく滞在</td>
<td>1羽</td>
</tr>
<tr>
<td>2010/7/7</td>
<td>17:51</td>
<td>左の棚</td>
<td>手ぶらで飛去 しばらく滞在</td>
<td>3羽</td>
</tr>
<tr>
<td>2010/7/7</td>
<td>18:23</td>
<td>左の棚</td>
<td>手ぶらで飛去 しばらく滞在</td>
<td>4羽</td>
</tr>
<tr>
<td>2010/7/7</td>
<td>18:23</td>
<td>右のテラス</td>
<td>手ぶらで飛去 しばらく滞在</td>
<td></td>
</tr>
</tbody>
</table>

c）両種の比較
オオセグロカモメとハシブトガラスの飛来状況を比較すると（表1-3-6）、ハシブトガラスの飛来は6月に多く、オオセグロカモメの飛来は7月に集中していた。過去の天売島における事例からこれは卵を捕食する傾向にあるハシブトガラスと雛を捕食する傾向にあるオオセグロカモメの性質を反映していると考えられる（環境省2010）。ハシブトガラスの繁殖地内への侵入率は高く、滞在時間は短かったが頻繁に見回をしているようであった。それに比べオオセグロカモメの飛来回数は少なく侵入率は低かったが1回の滞在時間は長く、繁殖地前を飛行して横切る際に、繁殖地内を観察しているようなそぶりを度々確認した。

<table>
<thead>
<tr>
<th>月</th>
<th>ハシブトガラス</th>
<th>オオセグロカモメ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5月</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6月</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>7月</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>計</td>
<td>13</td>
<td>2</td>
</tr>
</tbody>
</table>
(b) デコイによる防衛効果

ハシブトガラスはデコイの上を飛び移ることが可能であり、左側のデコイで封鎖した通路を崖側からうまく回り込んで繁殖地内に侵入することができた（図1-3-6）。しかし、12回の目撃結果からハシブトガラスの繁殖地の卵や雛がいる奥への侵入は、親鳥が繁殖地の不在中に卵が捕食された5月31日を除いて確認されていない。デコイによる効果は不明であるが、ハシブトガラスは度々繁殖地に侵入したにも関わらず、ウミガラスは1ヶ月以上繁殖を継続しハシブトガラスの攻撃から卵や雛を護っていた。

一方、オオセグロカモメは2009年に雛を捕食した際に侵入経路として利用した左側（図1-3-7）からの侵入は、デコイによって封鎖したため行われなかった可能性が高い（図1-3-6）。実際、7月7日には左側からデコイで封鎖した繁殖地方向へ歩いていたが、途中で引き返した。繁殖地の奥への侵入は確認していないが、7月7日に卵の殻をくわえていたことから、デコイを並べて侵入通路を限定したことによる防衛（図1-3-7）は破られたと推察される。デコイの間の通路の幅が、オオセグロカモメが通れる程広かったことが防衛できなかった原因の一つとして挙げられる。
(c) 音声による捕食者の誘引

餌運びを初確認した 7月7日に繁殖地内でウミガラスの卵の殻をくわえるオオセグロカモメを発
見したため音声を停止した。しかし、オオセグロカモメの飛来数は音声の停止前後で変化がなく、
ウミガラスの飛去数は音声停止前と比べて増加し、停止中に飛来した2羽は繁殖個体（餌持ち個体）
のみであった（表1-3-7）。約2時間後に、音声を再開させたところ、海上にかたまって浮いていた
ウミガラスが繁殖地へ飛来した。

更に、音声による誘引効果を確認するため、7月14日夕方に音声装置を停止した。その結果、翌
7月15日の最大飛来数は2羽と前日の11羽から大幅に減少した。また、音声停止中でウミガラス
がいない時にハシブトガラスが1羽飛来した。

7月11日には繁殖個体がいなくなったにも関わらず、上述のとおり 7月15日まで飛来は続いて
いた。また、2006年の屏風岩では、ウミガラスが6月30日を最後に常時確認されなくなった後も
音声を流し続けた結果、7月19日まで繁殖地への飛来が続いた。デコイや音声の誘引効果により繁
殖失敗後もしばらく飛来が続いていた可能性がある。

以上から、音声は繁殖関係ない個体を繁殖地内に留めておく一定の効果があることが示
唆された。また、音声を止めても捕食者の飛来は確認されており、孵化前から捕食者の飛来が確認
されている状況では、孵化直後に音声を停止しても捕食者の誘引を防ぐ効果は薄いと考えられる。

表1-3-7 7月7日の音声の稼働・停止前後の赤岩対崖繁殖地にお
けるウミガラスの出入りとオオセグロカモメの飛来状況

<table>
<thead>
<tr>
<th></th>
<th>音声</th>
<th>時刻</th>
<th>うミガラス</th>
<th>ハシブトガラス</th>
</tr>
</thead>
<tbody>
<tr>
<td>稼働</td>
<td>14:27</td>
<td>15:06</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>停止</td>
<td>15:07</td>
<td>17:26</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>稼働</td>
<td>17:27</td>
<td>18:36</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
2. その他海鳥の繁殖状況

(1) ケイマフリ Cephus carbo

1) 海上個体数調査

(a) 調査方法

ケイマフリの繁殖地周辺の陸上の5つの地点から調査を行った（図2-1-1）。4月からケイマフリが繁殖地からいなくなる8月上旬まで月に3回、波の穏やかな日を選んで1名が合計13回、早朝から朝にかけて、海上に浮いているか岩礁に上陸している個体を調査区画ごとに数えた。観察地点は崖の上にあるため海岸に近い部分（図の灰色の部分）が見えないが、この見えない部分にケイマフリがいることが多い。このため実際の個体数は確認数より多くなると考えられる。

図2-1-1 ケイマフリ海上個体数観察位置、調査区画と不可視範囲

(b) 調査結果

最大数は繁殖開始前の4月24日に341羽、繁殖開始後の7月14日に192羽であった（表2-1-1）。観察数は8月9日には0羽になり、最後に確認したのは8月4日で海岸沿いを歩いた際に④と⑤の範囲で合計7羽であった。

全般的にケイマフリは海岸線に近い部分で多く観察された。①では赤岩周辺で多く、②では赤岩周辺やシライソ周辺で多く観察された。③は平均すると最も多くの個体が確認されており、その多くが女郎子岩からカブト岩にかけて集中していた。④での確認数は0から数羽程度の時と数十羽確認される時でバラツキがあった。⑤では西側の岩礁周辺と観音崎周辺の海上で観察された。
表 2-1-1 海上個体数調査よるケイマフリの数

<table>
<thead>
<tr>
<th>回</th>
<th>調査年月日</th>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>⑤</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2010/4/5</td>
<td>41</td>
<td>56</td>
<td>112</td>
<td>0</td>
<td>15</td>
<td>224</td>
</tr>
<tr>
<td>2</td>
<td>2010/4/18</td>
<td>2</td>
<td>15</td>
<td>30</td>
<td>7</td>
<td>22</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>2010/4/24</td>
<td>77</td>
<td>59</td>
<td>129</td>
<td>43</td>
<td>33</td>
<td>341</td>
</tr>
<tr>
<td>4</td>
<td>2010/5/10</td>
<td>27</td>
<td>76</td>
<td>30</td>
<td>9</td>
<td>10</td>
<td>152</td>
</tr>
<tr>
<td>5</td>
<td>2010/5/19</td>
<td>9</td>
<td>34</td>
<td>26</td>
<td>13</td>
<td>14</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td>2010/5/23</td>
<td>2</td>
<td>15</td>
<td>40</td>
<td>2</td>
<td>8</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>2010/6/2</td>
<td>39</td>
<td>14</td>
<td>31</td>
<td>0</td>
<td>31</td>
<td>115</td>
</tr>
<tr>
<td>8</td>
<td>2010/6/15</td>
<td>15</td>
<td>17</td>
<td>23</td>
<td>2</td>
<td>23</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>2010/6/29</td>
<td>15</td>
<td>18</td>
<td>33</td>
<td>0</td>
<td>24</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>2010/7/3</td>
<td>28</td>
<td>36</td>
<td>64</td>
<td>5</td>
<td>10</td>
<td>143</td>
</tr>
<tr>
<td>11</td>
<td>2010/7/14</td>
<td>36</td>
<td>55</td>
<td>37</td>
<td>26</td>
<td>38</td>
<td>192</td>
</tr>
<tr>
<td>12</td>
<td>2010/7/25</td>
<td>27</td>
<td>31</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>2010/8/9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(c)過去の調査結果との比較

月8日と9日に任意の地点から短時間の観察を行った。

ケイマフリは高速で飛行し、逆風で遅いながら時々複数羽で帰巢する。ケイマフリの巣の出入りや餌運びは頻繁に行われないため、観察地点に待機し飛来する個体を待つか、巣の前にとまった個体が巣に入ることを目視して続ける必要があり、同時に2つ以上の巣を観察することは難しく餌運びや巣の出入りを見落とすことがある。また、ケイマフリの巣穴の入口は岩の間に隠れて目視できないものがあり、巣穴の有無を判断できない場合がある。以上の理由からケイマフリの繁殖状況を餌運びだけでなく、巣の出入りや行動から繁殖の可能性を示すものを調査結果に含めた。ケイマフリの繁殖状況の判断基準を表2-1-2に示した。

表2-1-2 ケイマフリの行動等から読み取る繁殖状況の判断基準

<table>
<thead>
<tr>
<th>行動等</th>
<th>巣穴入口の目視</th>
<th>繁殖状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>餌を持ったまま岩の隙間に入る</td>
<td>○</td>
<td>繁殖に利用中の巣</td>
</tr>
<tr>
<td>餌を持ったまま岩陰に消える</td>
<td>×</td>
<td>繁殖に利用中の巣</td>
</tr>
<tr>
<td>何も持たずに岩の隙間に出入り</td>
<td>○</td>
<td>繁殖利用が不明の巣</td>
</tr>
<tr>
<td>何も持たずに岩陰への出入り</td>
<td>×</td>
<td>岩の可能性あり</td>
</tr>
<tr>
<td>岩の隙間のそばで飛来、飛去、とまる</td>
<td>○</td>
<td>岩の可能性あり</td>
</tr>
</tbody>
</table>

ケイマフリの巣としての判断基準をもとに、①繁殖に利用中の巣を8箇所、②繁殖利用が不明の巣を27箇所、③巣の可能性ありを29箇所確認した（表2-1-3）。①-③の判断基準により最も多く確認した区画は8で、このほかに確認した区画は1,3,4,7であった（図2-1-3）。区画7-8では女郎小岩からカブト岩にかけての崖の割れ目や海岸沿いの岩が積み重なった隙間に、区画1-2では赤岩展望台や赤岩木道から観察可能な崖の割れ目や岩の隙間を利用していった。

表2-1-3 区画ごとのケイマフリの巣数

<table>
<thead>
<tr>
<th>巣としての判断基準</th>
<th>区画</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>①繁殖に利用中の巣</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>②繁殖利用が不明の巣</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>③巣の可能性あり</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>合計</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

(b)調査結果

ケイマフリの繁殖状況の判断基準をもとに、①繁殖に利用中の巣を8箇所、②繁殖利用が不明の巣を27箇所、③巣の可能性ありを29箇所確認した（表2-1-3）。①-③の判断基準により最も多く確認した区画は8で、このほかに確認した区画は1,3,4,7であった（図2-1-3）。区画7-8では女郎小岩からカブト岩にかけての崖の割れ目や海岸沿いの岩が積み重なった隙間に、区画1-2では赤岩展望台や赤岩木道から観察可能な崖の割れ目や岩の隙間を利用していった。

表2-1-4 区画ごとのケイマフリの巣数

<table>
<thead>
<tr>
<th>区画</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>①繁殖に利用中の巣</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>②繁殖利用が不明の巣</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>③巣の可能性あり</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>合計</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>64</td>
</tr>
</tbody>
</table>

(c)過去の調査結果

過去のケイマフリの繁殖巣調査は断続的に行われてきた（表2-1-4）。行動を「巣への餌運び」、「巣への出入り」と「その他」に分けた。過去の調査範囲や調査方法はそれぞれ異なり、調査に費やした期間や人員の数が異なるため、増減の傾向をこれらの結果から判断することは難しい。
表2-1-4 ケイマフリの巣数（1981-2010）*その他の行動による判断

<table>
<thead>
<tr>
<th>年</th>
<th>巣への 餌運び</th>
<th>巣への出入り</th>
<th>その他</th>
<th>調査範囲</th>
<th>合計</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>4</td>
<td>64</td>
<td>赤岩-観音崎</td>
<td>綿貫他 1986.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>12</td>
<td>3</td>
<td>女郎子-観音</td>
<td>環境省未発表</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>5</td>
<td>10</td>
<td>赤岩-観音崎</td>
<td>環境省2010.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>8</td>
<td>27</td>
<td>赤岩-観音崎</td>
<td>環境省2010.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) 航路センサス

(a) 調査方法

調査は2010年3月26日から8月10日までの31回、羽幌から焼尻・天売までのフェリー航路（図
2-1-4）で行った。甲板から双眼鏡を用いてケイマフリの観察を行い、海上にケイマフリを発見した
際に航路上の位置をGPSで記録した。

(b) 調査結果

110箇所で合計157羽のケイマフリを目撃した（図2-1-4）。このうち79%の箇所では1羽の目撃
であった。3月と4月は羽幌の沖合で確認数が多かったが、5月から8月にかけては天売島や焼尻
島の周辺で多くなった。全体的には焼尻島の東沿岸で確認数が最も多く（58%）、この点で過去の調
査結果と（北海道海鳥センター2002；環境省2010）と類似していた。

図2-1-4 航路センサス（ケイマフリ）
(2) ウミスズメ Synthliboramphus antiquus

1) 夜間調査

2009年の鳴き声調査結果から崖沿いにありウミスズメの鳴き声が届きやすい st.4-1・4-2・5-1で5月9日から6月13日の7回、日暮れ1時間30分以降にウミスズメの鳴き声調査を行った(図2-2-1)。鳴き声はいずれの日も3地点のうちの1箇所以上で聞こえた。調査の際にウミスズメの鳴き声の録音を行ったが、鳴き声が遠く再生してもかすかに聞こえる程度で、周波数解析するのに十分な音量が得られなかった。ウミスズメの巣立ちを確認するために6月13日の21:30にst.5-1下の海岸へ出た。上からはウミスズメの鳴き声がよく聞こえたが、海岸に出ると波の音が障害となり、鳴き声が聞こえず巣立ちの確認はできなかった。

図 2-2-1 ウミスズメ鳴き声調査位置

2) 目撃記録

目撃の記録はボートや陸上からの観察により行われた。2010年は5月18日以降で天売島のまわりでウミスズメが目撃されており、位置が記録されているものは5月23日から6月16日であった(表2-2-1・図2-2-2)。ウミスズメは海鳥繁殖地より東側の集落の沿岸の200m-300mの範囲で多かったが、天売港の岸壁の裏側のすぐそばでの目撃もあった。
表 2-2-1 天売島周辺におけるウミスズメの目撃記録

<table>
<thead>
<tr>
<th>番号</th>
<th>日付</th>
<th>個体数</th>
<th>備考</th>
<th>番号</th>
<th>日付</th>
<th>個体数</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2010/5/23</td>
<td>10</td>
<td>*情報</td>
<td>12</td>
<td>2010/6/14</td>
<td>6</td>
<td>*情報</td>
</tr>
<tr>
<td>2</td>
<td>2010/5/23</td>
<td>3</td>
<td>*情報</td>
<td>13</td>
<td>2010/6/14</td>
<td>4</td>
<td>*情報</td>
</tr>
<tr>
<td>3</td>
<td>2010/5/23</td>
<td>1</td>
<td>*情報</td>
<td>14</td>
<td>2010/6/14</td>
<td>2</td>
<td>*情報</td>
</tr>
<tr>
<td>4</td>
<td>2010/6/3</td>
<td>6</td>
<td>*情報</td>
<td>15</td>
<td>2010/6/14</td>
<td>3</td>
<td>*情報</td>
</tr>
<tr>
<td>5</td>
<td>2010/6/3</td>
<td>1</td>
<td>*情報</td>
<td>16</td>
<td>2010/6/14</td>
<td>1</td>
<td>*情報</td>
</tr>
<tr>
<td>6</td>
<td>2010/6/3</td>
<td>1</td>
<td>*情報</td>
<td>17</td>
<td>2010/6/14</td>
<td>1</td>
<td>*情報</td>
</tr>
<tr>
<td>7</td>
<td>2010/6/7</td>
<td>3</td>
<td></td>
<td>18</td>
<td>2010/6/16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2010/6/7</td>
<td>3</td>
<td></td>
<td>19</td>
<td>2010/6/16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2010/6/7</td>
<td>5</td>
<td></td>
<td>20</td>
<td>2010/6/16</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2010/6/8</td>
<td>2</td>
<td></td>
<td>21</td>
<td>2010/6/16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2010/6/8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*寺沢孝毅氏

3) 航路センサス

(a) 調査方法

ウミスズメの航路センサスはケイマフリの航路センサスと合わせて3月26日から8月10日までの31回、羽幌から焼尻・天売までのフェリー航路で行った(図 2-2-3)。甲板から双眼鏡を用いてウミスズメの観察を行い、海上にウミスズメを発見した際に航路上の位置をGPSで記録した。

![図 2-2-3 航路センサス結果（ウミスズメ）数字は確認個体数](image)

(b) 調査結果

12箇所で合計43羽のウミスズメを確認した。4月23日に一箇所で最大の17羽を確認した。3月・4月と比べて5月の確認位置は天売島寄りの傾向があった。6月以降の目撃はなかった。

3) 過去の繁殖状況

過去のウミスズメの繁殖状況を表 2-2-2 に示した。ウミスズメは1958年に卵の発見により繁殖が確認され、500羽の生息が推定された(村田1958)。その後、赤岩対崖周辺から古灯台の西側斜面にかけて繁殖が確認された。最後に繁殖が確認されたのは1994年であった。この時点で過去に繁殖した場所で繁殖が確認されなくなっていたため(福田ほか1995)、繁殖地や個体数が減少している可能性がある。カナダには移入したドブネズミによって壊滅的な影響を受けた繁殖地がある(Regehr et al. 2007)。天売島の海鳥繁殖地周辺でドブネズミが確認されており(梅木ほか1995)、影響が懸念される。2008年の5月にこれまで繁殖の記録がないオンチャワゴ周辺で成鳥1羽の死体が発見された(平田和彦、図 2-2-4)。2009年に夜間に鳴き声調査を行ったところ、赤岩展望台から観音崎にかけての6つの地点でウミスズメの鳴き声を確認した(環境省2010)。このことからウミスズメの繁殖地は赤岩対崖から古灯台にかけてだけでなく、観音崎周辺まで分布している可能性が示唆された。
表 2-2-2 過去のウミスズメの繁殖状況

<table>
<thead>
<tr>
<th>年</th>
<th>繁殖の根拠</th>
<th>確認場所</th>
<th>確認日</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>1958</td>
<td>推定 500 羽</td>
<td>古灯台南方斜面</td>
<td>1958/6/16-17</td>
<td>村田 1958</td>
</tr>
<tr>
<td>1958</td>
<td>死体 1</td>
<td>赤岩塚下</td>
<td>1958/5/21</td>
<td>村田 1958</td>
</tr>
<tr>
<td>1958</td>
<td>卵 2</td>
<td>赤岩基部</td>
<td>1958/5/21</td>
<td>村田 1958</td>
</tr>
<tr>
<td>1963</td>
<td>繁殖する</td>
<td>赤岩崖下東</td>
<td>-</td>
<td>黒田 1963</td>
</tr>
<tr>
<td>1981</td>
<td>卵殻</td>
<td>-</td>
<td>-</td>
<td>綿貫ほか 1986</td>
</tr>
<tr>
<td>1982</td>
<td>卵 2</td>
<td>赤岩展望台下</td>
<td>-</td>
<td>坂沢・綿貫 未発表</td>
</tr>
<tr>
<td>1982</td>
<td>巣立ヒナ</td>
<td>-</td>
<td>-</td>
<td>綿貫ほか 1986</td>
</tr>
<tr>
<td>1983</td>
<td>巣立ヒナ</td>
<td>-</td>
<td>-</td>
<td>綿貫ほか 1986</td>
</tr>
<tr>
<td>1984</td>
<td>成鳥の死体</td>
<td>-</td>
<td>-</td>
<td>綿貫ほか 1986</td>
</tr>
<tr>
<td>1987</td>
<td>推定 100 つがい</td>
<td>-</td>
<td>-</td>
<td>綿貫ほか 1988</td>
</tr>
<tr>
<td>1987</td>
<td>14 枚</td>
<td>赤岩対崖上部</td>
<td>巣の孵化（5 月 25 ー 6 月 5 日）</td>
<td>福田ほか 1995</td>
</tr>
<tr>
<td>1994</td>
<td>卵殻</td>
<td>赤岩対崖</td>
<td>-</td>
<td>福田ほか 1995</td>
</tr>
<tr>
<td>1994</td>
<td>卵殻</td>
<td>赤岩展望台北</td>
<td>-</td>
<td>福田ほか 1995</td>
</tr>
<tr>
<td>2008</td>
<td>成鳥死体 1</td>
<td>オンチャワゴ周辺</td>
<td>2008/5/1</td>
<td>平田和彦 未発表</td>
</tr>
</tbody>
</table>

図 2-2-4 2008 年 5 月 1 日に確認されたウミスズメの死体（左）平田和彦氏撮影）と死体の位置（右）

4) 国内の繁殖地

近年も国内でウミスズメが繁殖している可能性のある場所は天売島の他ハボマイモンリ（仲村昇私信）、三貫島（小城 1998）に限られている。天売島で最後にウミスズメの繁殖が確認されたのは 1994 年でその後の繁殖の証拠はない。しかし、2008 年に陸上で成鳥の死体が発見され、2010 年は繁殖期の 5 月から 6 月にかけて天売島周辺で姿が確認され、夜間に鳴き声も聞きえていることから繁殖している可能性は高いと考えられる。

(3) その他

天売島にはウミガラス・ケイマフリ・ウミスズメの他にウミウ Phalacrocoryx filamentosus・ヒ メウ Phalacrocoryx pelagicus・オオセグロカモメ Larus schistisagus・ウミネコ Larus crassirostris・ウトウ Cerorhinca monocerata が繁殖しており、天売海鳥研究室（未発表）によっ て 1979 年より繁殖数調査が行われている。

2010 年を含む過去の繁殖結果を表 2-3-1 に示した。2010 年のウミネコ巣数は推定 2823 で過去最 低だった 2009 年より増加しているが、巣立ち期に至る前に繁殖をやめてしまうコロニーを複数確 認した。巣立ち期にこれまでにごく普通に目撃されてきた幼鳥の姿が数例を除いて目撃されていな いことから、繁殖の成功率は著しく低かったと推定される。2010 年のオオセグロカモメの巣数は推 定 270 で、減少した 2009 年よりもさらに減少し、2008 年の 4 分の 1 ほどになり、急増する前 1980 年代前半の水準になった。

2010 年のウミウの巣数は推定 149 で過去最低となった。観察していた繁殖地でも抱卵や育雛を途 中でやめるのが確認された（伊藤元裕 私信）。巣立ち期には数は減少するものの巣立ちヒナの姿が みられた。2010 年のヒメウの巣数は 30 で 2009 年の 49 よりも減少した。巣立ちヒナは確認されていないが、育雛期後期に巣内で成長したヒナの姿がみられた。

2010 年のウトウの繁殖数のデータはないが、天売海鳥研究室（未発表）によると例年とは異なり
巣立ち期の後期に巣にヒナが残っているにも関わらず、親鳥が帰巣しなくなったことが観察されている。このことからウトウの繁殖成績もよくなかったことが示唆される。

表 2-3-1 1979-2010 のクミ・ヒメ・オオセグロ・ウミ・ウトの巣数（天売海鳥研究室 未発表）

<table>
<thead>
<tr>
<th>年</th>
<th>ウミネコ（推定数）</th>
<th>オオセグロカモメ（推定数）</th>
<th>ウミウ（推定数）</th>
<th>ヒメウ（実数）</th>
<th>ウトウ（推定数）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>23274</td>
<td>130</td>
<td>483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>24077</td>
<td>163</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>20867</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>24170</td>
<td>320</td>
<td>500</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>29466</td>
<td>414</td>
<td>545</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>30180</td>
<td>518</td>
<td>738</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>18400</td>
<td>696</td>
<td>903</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>9458</td>
<td>854</td>
<td>1152</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>13000</td>
<td>908</td>
<td>1305</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>14000</td>
<td>917</td>
<td>1315</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>8150</td>
<td>1184</td>
<td>1368</td>
<td>4+</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>6674</td>
<td>900</td>
<td>1315</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>12060</td>
<td>834</td>
<td>1514</td>
<td>5+</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>12506</td>
<td>1024</td>
<td>1056</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>7827</td>
<td>660</td>
<td>1276</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>6920</td>
<td>1168</td>
<td>1133</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>10131</td>
<td>834</td>
<td>1512</td>
<td>8+</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>6674</td>
<td>1046</td>
<td>1621</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>2993</td>
<td>769</td>
<td>1012</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>3467</td>
<td>660</td>
<td>747</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>6399</td>
<td>931</td>
<td>1450</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>6030</td>
<td>646</td>
<td>1019</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>3962</td>
<td>1035</td>
<td>1206</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>2416</td>
<td>473</td>
<td>708</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>2823</td>
<td>270</td>
<td>149</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
3. 普及啓発

普及啓発としてウミガラスや天売島で繁殖する海鳥の繁殖等の情報の発信をポスターの掲示・回覧板・インターネット・講演・報道発表によって行った。

(1) ポスター掲示・回覧

ウミガラスの繁殖状況等を北海道海鳥センター、羽幌・天売フェリーターミナル、天売海鳥観察舎に掲示し、天売島内で回覧板としてそれぞれの家庭に回覧した（表3-1）。

| 表 3-1 ウミガラスの繁殖状況等のポスター回覧内容 |
|----------------|-----------|
| 日付 | 内容 |
| 2010/4/21 | 音声装置の設置について |
| 2010/5/20 | 赤岩対崖へのウミガラス飛来について |
| 2010/5/21 | ウミガラス（オロロン島）を16羽確認しました|
| 2010/7/9 | ウミガラスの飲料について |
| 2010/8/17 | ウミガラス繁殖結果について |

(2) インターネット

北海道海鳥センターのホームページ (www3.town.haboro.hokkaido.jp)のブログ『海鳥日記(http://seabirds.exblog.jp/)』にウミガラスや他の海鳥の繁殖状況等を15回発信した（表3-2）。

| 表 3-2 天売島海鳥のブログ発信内容 |
|----------------|-----------|
| 日付 | 内容 |
| 2010/4/22 | 音声装置を設置しました |
| 2010/5/20 | オロロン島 16羽確認 天売島 |
| 2010/5/23 | 5月19日のウミガラス（ビデオ） 天売島 |
| 2010/6/2 | ウトウの帰巢シーンの動画です |
| 2010/6/14 | 天売島 ウミガラス 交尾のような行動 |
| 2010/6/9 | ウトウが多く来ています |
| 2010/6/10 | ウミズメ |
| 2010/6/11 | 天売島へ行ってきました |
| 2010/6/17 | ウミガラスが浮いています |
| 2010/7/14 | 赤岩展望台付近で子育て中のケイマフリ |
| 2010/7/17 | 天売島のウトウ |
| 2010/7/21 | ボエマフリ えさ運び |
| 2010/7/27 | ウトウ離 海へ |
| 2010/8/6 | 天売島の海鳥 |
| 2010/8/17 | 今年のウミガラスの繁殖 |

(3) 講演

ウミガラス保護増殖事業や天売島の海鳥について発表を2回行った（表3-3）。日本島学会では他の海鳥繁殖地復元に取り組む内外の研究者等と捕食者対策等の情報交換をし、カラス類を研究している方からカラス対策に関する情報を得た。生物多様性交流フェアでは環境省ブース内でワークショップ形式で天売島で撮影したビデオ映像を放映するなどした。

| 表 3-3 ウミガラスや海鳥の講演内容 |
|----------------|-----------|
| 日付 | 場所 | 内容 |
| 2010/9/22 | 日本島学会2010年度大会 公開シンポジウム | ウミガラス保護増殖事業～天売島における |
| | 『海鳥集団繁殖地の復元』 東邦大学志野キャンパス | ウミガラス繁殖地回復への取り組み～ |
| 2010/10/11-12 | 生物多様性交流フェア(COP10 会場に隣接する公園) | 天売島におけるウミガラス等の海鳥の保全 |

(4) その他

ウミガラスの繁殖に重要な行動が確認された場合は、関連する機関（羽幌町・留萌総合振興局）や報道機関（留萌総合振興局記者クラブ、北海道新聞・羽幌タイムス・日刊留萌）等に情報を配信した。
4. 文献

北海道保健環境部自然保護課, 1989. 天売鳥ウミガラス生息実態調査報告書.

環境省北海道地方環境事務所, 2006. 平成 17 年度ウミガラス保護増殖事業業務報告書.

環境省北海道地方環境事務所, 2010. 平成 21 年度ウミガラス保護増殖事業業務報告書.

寺沢孝毅・青塚松寿, 1986. 天売島における海鳥の繁殖状況. 留萌支庁委託調査報告書.

5. 資料

ウミガラスの過去の繁殖状況

<table>
<thead>
<tr>
<th>全体</th>
<th>開けた場所</th>
<th>開けている場所</th>
<th>開けていない場所</th>
<th>開けなかった場所</th>
</tr>
</thead>
<tbody>
<tr>
<td>個体</td>
<td>個体</td>
<td>番卵</td>
<td>卵雛</td>
<td>巣</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>年</th>
<th>個体</th>
<th>番卵</th>
<th>卵雛</th>
<th>巣</th>
<th>個体</th>
<th>番卵</th>
<th>卵雛</th>
<th>巣</th>
<th>例外</th>
<th>個体</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>8000</td>
<td>500</td>
<td>1500</td>
<td>1000</td>
<td>1500</td>
<td>3000</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>470</td>
<td>280</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>162</td>
<td>27</td>
<td>7</td>
<td>10</td>
<td>5</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>68</td>
<td>11</td>
</tr>
<tr>
<td>1998</td>
<td>17</td>
<td>806</td>
<td>208</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>20</td>
<td>74</td>
<td>509</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>24</td>
<td>7</td>
<td>3030</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>17</td>
<td>3030</td>
<td>303</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>13</td>
<td>5050</td>
<td>305</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>18</td>
<td>3</td>
<td>1010</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>15</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>50</td>
<td>52</td>
<td>2200</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>21</td>
<td>31</td>
<td>1101</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>11</td>
<td>20</td>
<td>4402</td>
<td>103</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>12</td>
<td>9</td>
<td>3131</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

誘引対策による再飛来

繁殖した最終年

繁殖した最短年

繁殖した最長年

個体: 最大個体数
番: 福袋繁殖数
卵目撃: 卵及び卵の確認数
卵推定: 上記以外の情報からの推定数
雛目撃: 雛及び雛の確認数
雛推定: 上記以外の情報からの推定数
巣立推定: 雛の日齢等から推定数
保護増殖事業計画（H13.11.30）

2010年 実施計画

実施結果

2011年 実施計画（案）について

第1 事業の目標

ウミガラスは、北半球寒冷海域に分布し、北海道沿岸を繁殖地とするウミスズメ科の海鳥である。本種は、自然環境における行動の貴重な観察者であるが、自然環境の悪化に伴い、生息個体数の減少が見られる状況にある。

本事業は、本種の生息状況の把握とモニタリングを行い、その結果等を基に、本種の生息状況の維持・改善及び生息を圧迫する要因の増減・除去等を図ることにより、本種が自然状態で安定的に存続できる状態になることを目標とする。

第2 事業の区域

主として北海道域(天売島等)における本種の分布域

第3 事業の内容

1 生息状況等の把握・モニタリング

本種の保護増殖事業を適切かつ効果的に実施するため、以下の調査を行う。

(1) 生息状況の把握・モニタリング

本種の分布域において、繁殖期及び非繁殖期に陸域や海上からの観察等により、本種の分布や繁殖状況等生息状況の動向を継続的に把握する。また、生息情報の収集、整備に努める。

2 生物学的特性の把握

標識の装着による個体識別、ラジオトラッキングやデータロガーによる行動解析等の手法を活用し、繁殖期及び非繁殖期の行動及び採餌海域等を把握する。

3 生息好適環境及び生息圧迫要因等の把握

上記(1)及び(2)の結果を基に、本種の生息に適した環境を把握するとともに、個体群の維持に影響を及ぼすおそれのある要因及びその除去に必要な対策等に関する調査研究を進め。

●誘引対策

〈屏風岩対崖〉

①4月から音声装置を設置
②デコイ設置は不可能であると判断したため設置を行わない

●捕食者対策

①ハシブトガラスに加えてオオセグロカモメのスペシャリストの巣も除去。
②ハシブトガラスの個体数、ウミガラス繁殖地周辺の巣・ねぐらを調査する。
③エアライフルによる捕獲の検討

3 飼育下での繁殖

本種の繁殖は、生息地における野外個体群の維持・拡大を基本とするが、野外個体群のさらなる減少に備え、飼育下での繁殖について検討する。さらに、飼育下で生まれた個体の生息適地への再導入の可能性等を検討する。

4 生息地における監視等

本種の生息地への不用意な接近等個体群の維持に悪影響を及ぼすおそれのある行為を防止するため、生息地における監視等を行う。

5 普及啓発の推進

本種の保護増殖事業を実効あるものとするためには、各種事業活動を行う事業者、関係行政機関及び関係地域の住民を始めとする国民の理解と協力が不可欠である。このため、本種の生息状況及び保護増殖事業の実施状況に関する情報を発信し、本種が自然状態で存続できる状態になることを図るための啓発活動を講ずることにより、地域の自主的な保護活動の展開が図られるよう努める。

6 効果的な事業の推進のための連携の確保

本事業の実施に当たっては、事業に係る国、北海道及び関係市町村の各行政機関、本種の生態等に関する研究者、地域の住民等の関係者間で連携を図り、効果的に事業が推進されるよう努める。